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Abstract. The mock A N N N I  model is generalised in replacing the Ising spins by q-state 
Potts variables. Performing exact dedecoration transformations for general q and using 
Monte Carlo techniques in two dimensions for q = 3, a multitude of distinct spatially 
modulated long-range ordered phases, as well as phases with algebraic order, are found 
10 spring from a multiphase point. 

1. Introduction 

Motivated by findings on the axial next-nearest-neighbour Ising ( A N N N I )  model (Fisher 
and Selke 1980), decorated Ising models with competing interactions have been 
introduced and studied by Huse et a1 (1981). These ‘mock’ A N N N I  models are fully 
solvable in terms of properties of simple anisotropic nearest-neighbour ( N N )  Ising 
models with ferromagnetic couplings within layers and an effective, ferro- or anti- 
ferromagnetic, interlayer coupling. They have been found to exhibit behaviour quite 
similar to that of the true ANNNI models. In particular, they display multiphase points 
at zero temperature from which a multitude of distinct commensurate phases, charac- 
terised by a spatially modulated magnetisation, spring. However, no branching 
processes (Selke and Duxbury 1984) or incommensurate structures occur. 

In this paper we replace the Ising spins of the mock A N N N I  model by q-state Potts 
variables. It turns out that this simple generalisation has a rather drastic impact on 
half of the commensurate phases in two dimensions: if the effective interlayer coupling 
is antiferromagnetic, then long-range order is apparently destroyed and algebraic order 
of the Kosterlitz-Thouless type occurs. However, for ferromagnetic effective interlayer 
couplings, results on the Ising models carry over to the Potts case with only minor 
quantitative modifications. 

The layout of this paper is as follows: in 5 2 the mock axial next-nearest-neighbour 
Potts (or ANNNP)  model is introduced and a dedecoration transformation is performed 
by which the model is mapped onto a N N  anisotropic Potts model. This transformation 
is studied in the low-temperature regime in § 3 and explicit analytical expressions are 
obtained for the effective Potts coupling. In 9 4 we present findings of a new Monte 
Carlo study on the correlation functions for the two-dimensional q = 3 metamagnetic 
N N  Potts model (ferromagnetic intralayer and antiferromagnetic interlayer couplings). 
Some previous conjectures on the phase boundary of this metamagnetic model (Kinzel 
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104 W Selke and F Y Wu 

et a1 1981, Truong 1984) are scrutinised. In § 5 we present results of numerical studies 
on the basis of the formulation and results of $ 5  2-4. Phase diagrams of the two- 
dimensional mock A N N N P  model are studied and the spatially modulated ordered 
phases are characterised. 

2. The mock ANNNP models and the dedecoration transformation 

The mock axial next-nearest-neighbour Potts (or ANNNP)  models are q-state Potts 
models decorated in an uniaxial direction with spins coupled via competing interactions. 
The models are defined in full analogy to the mock A N N N I  models (Huse et a1 1981) 
by replacing Ising spins by Potts variables, with q = 2 corresponding to the Ising case. 
In the most general case consider a d-dimensional hypercubic lattice with Potts spins 
s, = (1,2, . . . , q ) .  Within layers of ( d  - 1) dimensions the spins s, interact with fer- 
romagnetic nearest-neighbour couplings J o .  However, each spin s, is coupled to its 
two nearest neighbours s , - ~  and s,,, in the two adjacent (d - 1)-dimensional layers 
via a linear chain of n Potts spins U,, i = 1,2 , .  . . , n. The spins s, are referred to as 
the nodal spins and U, the decorating or bond spins. 

Along each chain the n decorating spins U, and the two nodal spins interact with 
ferromagnetic N N  couplings J ,  > 0 and competing antiferromagnetic next-nearest- 
neighbour ( N N N )  couplings .I, < 0, a situation illustrated in figure 1 for d = 2. Note 
that we have chosen the N N  couplings at the two ends of the chain to be fJ , ,  a choice 
which takes into account that the N N  couplings at the ends of the chain are in 
competition with only one N N N  coupling and which will facilitate our later consider- 
ation. The parameter controlling the competition is 

K = - J J J , .  (1) 
As each chain of n decorating spins is connected to the rest of the lattice through 

the two nodal spins only, we can perform an exact dedecoration transformation resulting 
in an effective N N  coupling (independent of the dimension d )  

(2)  
between two N N  nodal spins in adjacent ( d  - 1)-dimensional layers. Thus, by so doing, 
we have reduced the mock A N N N P  model to a N N  Potts model. It follows that 
thermodynamic properties of the mock A N N N P  model can be deduced from those of 
the N N  models. For instance, in two dimensions, for K , ,  > 0, the phase boundary in 
the (K,  T )  plane is known to be given by 

Jef i (K,  T )  = k ,  TKefi(~,  T )  

[exp(Ke,) - Il[exp(Kd - 11 = q (3) 

Figure 1. The two-dimensional mock A N N N P  model. Full circles denote the nodal Potts 
spins, s,, open circles the decorating spins, U,. The dedecoration transformation replaces 
the chain of n bond spins by an effective interaction between nodal spins. 
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where K o = J o / k , T  (see, e.g., Wu 1982). However, for K,,<O the question has been 
raised (Truong 1984) on the validity of the phase boundary conjectured by Kinzel et 
al (1981). To improve the matter we present in 5 4 results of a new Monte Carlo study 
on the phase boundary for the two-dimensional metamagnet N N  model with Kefi < 0 
and q = 3. In three (and higher) dimensions the anisotropic N N  Potts model has not 
been studied in detail yet. 

The dedecoration transformation can be carried out for general q and n by means 
of the transfer matrix method. However, straightforward generalisation of the transfer 
matrix method used by Huse et al (1981) requires the diagonalisation of a q 2 x  q2 
matrix which is not readily done for general q. 

Here we use an alternate approach which requires the use of a 5 x 5 transfer matrix 
with q appearing as a parameter. This simplified approach makes it possible to carry 
out numerical calculations for general q without difficulty. In addition, it also leads 
to an exact formulation for identifying low-temperature properties. 

The particular choice of the two end N N  couplings iJ1 of a chain as shown in figure 
1 permits us to build the chain of n decorating spins by combining ( n  + 1 )  building 
units as shown in figure 2. Let Z l ( c l ,  c2, U ? )  denote the partition function of the unit 
shown. Then, the Boltzmann factor for a chain between two nodal spins s, and s , + ~  is 

~ ( s , ,  '!+I) = C zI(st, ~ 2 ) ~ l ( ~ 1 1  (+2, ~ 3 )  . * . Z l ( c n - l y  e n ,  sz+l) 
U,. U,, 

where we have introduced the general definition: 

ZI+l(S,, UI+1, U/+2) = c Zf(S,, e,, flI+I)ZI(% c/+1, (+1+2)  

with = s , , ~ .  

1 = 1 , 2 , .  . . , n - 1 (5)  
V I  

The evaluation of (4)  is facilitated by writing 

Z I ( ~ I ,  ~ ~ ) = A / S I , + B ~ ~ ~ ~ + C I S I ~ + D / S I ~ S ~ ~ + E ,  ( 6 )  

where 6, denotes the Kronecker symbol Sv,,u,. Then (5) can be written in a matrix form 

* /+I  = ?*I 

6, = (4, B/ ,  G, DI, El)  

1 = 1 , 2 , .  . . , n (7)  

where t,b is a column matrix whose transpose is given by 

(8) 

and ? is the 5 x 5  matrix 

a 0 q + a + c  a + l  
a a + c + d  0 

d 0 qa+d a + c + d  0 
1 a + l  0 0 q + a + c  

? = j _  0 0 0 (9) 

where 

a = exp(K,/2) - 1 

d = a 2 ( c + 1 ) + 2 a c .  

c = exp( K 2 )  - I 
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J 2  

Figure 2. Building unit of a chain. 

In fact, +l is readily determined from Z1 and figure 2, yielding 

$1 = (a ,  a, c, 4 1). (11) 

Using (7) and ( l l) ,  we can then compute Z,, by iteration. Finally we compute B(s , ,  
using (4), and Kef f  using 

exp(Kefi)=B(l,  1)/B(19 2) 

=l+(qCn+Dn)/ (An+Bn+qEn).  (12) 

We can also obtain correlation functions of the decorating spins. To illustrate, 
consider the expectation value of F(c+,,,) for arbitrary F :  

(F(c+m))  = C F(Um)Z,(s i ,  (JI > c+?) . . . Z I ( ~ + ~ - I  3 c+n, si+~)/B(sz, S,+1). (13) 
= I .  .=,I 

An analysis similar to that given above, details of which will be omitted, leads to the 
following expression: 

(F(c+,,,))s,,s,+, = ( A F ( s , ) + ~ ~ ( ~ , + , ) + ~ ~ , , i + l ~ ~ ~ l ~ + ~ ~ + ~ i , i + l ~ ~ ~  F(fl))(B(si, si+l))-’ 

(14) 
where 

A = A,(A,-, + B,,-,,, + qE,, - , )  + C,,,B,-,,, + D,,,(B,-,,, + E,,-,,,) 

B = B,(A,-,,, + C,,-,,, + Dn-,) + C,C,-, + E,,,(qC,-, + D,,-,,,) 

C = C,,,A,-, (15) 

D=A, (qC, - ,+D, - , )+  C , D , - ~ + D , ( A , ~ ~ + C , - ~ + D , - , )  

E = B,(B,,-,+E,-,,,)+ C,E,-,,, +E,(A, - , , ,+B, , - ,  +qE,- , , , ) .  

In particular, we find for the bond spin expectation values between two fully ordered 
nodal spins: 

(6u,,,l)1,1 = ( A +  B +  C + D +  E ) / [ q (  C + E ) + A +  B +  D ]  

(&,,l)l,* = ( A  + E + A + B )  (16) 

(a=,,,.di,2 = ( B  + E )/ ( q E  + A  + B ) .  

3. Low-temperature phases 

As in the case of the mock A N N N I  model (Huse et a1 1981), the point ( K  =+, T = 0 )  
is a multiphase point, and it is important to analyse the low-temperature properties 
near K = i. For this purpose we consider f~ - t) = 6 + 0, T -f 0, but 

u=exp(-6Jl/k,T)=2cos e (17) 
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fixed and finite. In this limit and to leading order we may replace (9) by 
S 0 S S 

(18) 
0 
S 

(19) 

(U-1)s 0 0 (_I I 0 0 0 
(v-2)s  0 (u+q-2 ) s  (U-1)s 

0 S 0 0 

where s = exp( K1/2) -$ CO. Then to leading orders we may set, after making use of (7) ,  
c, = 0 

and use the following recursion relations for V: 

The recursion relations (20) can be solved by using the method of generating 
functions, leading to 

m z(1-z) 
f l=l  1-uz+z2 

m (U-2)z 
f l=l  1 - uz+ z2 

A(z) = A,z" = 

D ( z ) =  c Dflzfl= 

B ( z )  = B,z" = 

E(z )  = E,Z" = 

Z( 1 - z)[ l+ zA(z)] 
f l=l  1 - uz - ( q  - 1)z2 

1 - vz - ( q  - l)z2'  
z2( 1 + zA( z)] 

f l = l  

From (21) we obtain 

, sin 10 -sin( 1 - l ) 8  
sin 8 

AI = s 

, sin 18 
sin 8 

D,=(u -2 ) s  - l = l , 2 , 3  ,..., n 

and 

El = O  EZ=1 
E, = a,-2 - ( U  - 1)alW3 

B1 = 1 

4 = 4 + 1 -  El 

1 = 3,4,  . . . , n 

1 =2 ,3 , .  . . , n 
where 

a, =- 1 ( CY:+~-CY!+~ - sin(1+3)8) 
q C Y + - C Y -  sin 8 

CY, =${U f [ u2+4( q - 1)p2} .  
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These results are used in numerical calculations on the spatial modulation in the 
ordered phases, presented in § 5. In particular, the low-temperature asymptotes of the 
phase boundaries are given by Kelr = 0 (Huse er a1 1981) or, using (12), (19) and (22), 
by sin n e  = 0 which is equivalent to 

v = 2 cos( mrrl n )  m =0,  1 , .  . . , [n/2].  (24) 
Equation (24) shows that these asymptotes, which are the same as those found for the 
mock A N N N I  model by Huse et a1 (1981), are independent of 9. (Note that the q = 2  
Potts interactions J,) and J ,  are twice those of the usual lsing couplings.) 

4. Monte Carlo study of the three-state metamagnetic Potts model 

We consider the three-state metamagnetic N N  Potts model on a square lattice (lattice 
constant a )  with ferromagnetic interactions, K ,  = J , /k ,T ,  along one direction of the 
lattice, say, the x axis, and  antiferromagnetic interactions, K , ,  along the other axis. 
Obviously, K ,  and K ,  correspond to K,,  and K,,, in the mock A N N N P  model. To 
determine the phase boundary of this model, we performed a Monte Carlo study 
computing, especially, the correlation function 

Cif‘) = c ( 8 , ( , , X k X )  ( 2 5 )  

where the summation goes over the three states X = 1 , 2  and 3; r = (x, y )  denotes the 
distance from the origin, 0. While C ( r )  decays monotonically along the x axis, there 
is an superimposed oscillatory behaviour with a periodicity of two lattice spacings 
along the y axis because of the antiferromagnetic interaction (see also Hoppe and 
Hirst 1985). In both cases the correlation lengths, tr,,, can be extracted from the 
asymptotic form, for large Irl, 

~ ( r )  - exp(-t/lrO. (26) 

Results on the correlation lengths in the two directions for lattices of N columns and 
N rows, N = 60, are displayed in figure 3 for J, = -J,. Typically, runs of several lo4 

X 

1.6- 

w l l -  
c -  - . -  
c -  

0.8 - 

- 

0 -  I 
0.5 0.6 0.7 0.8 0 9  

kBTIJ, 

Figure 3. Correlation lengths for the N N  three-state metamagnetic Potts model, with 
J, = - J y ,  plotted against temperature. ‘ y ’  denotes the correlation length, t?, along the 
direction with antiferromagnetic couplings, ‘x’ the one along the direction with ferromag- 
netic N N  interactions. For comparison the position of the maximum in the specific heat, 
C,,, , is shown. Systems of size 60 x 60 are used. 
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Monte Carlo steps per site were performed. Since full periodic boundary conditions 
have been imposed, finite-size effects are expected to be of minor importance for tX 
(or (,, which is, of course, smaller than &) no larger than about one-half of the linear 
lattice dimension. Indeed, we checked that by doing some runs for smaller systems 
( N  = 20 and 30). Our data are compatible with a phase transition of Kosterlitz-Thouless 
type at which the correlation length diverges as (Kosterlitz and Thouless 1973) 

( -exp[l / (T-  T,)”*] (27) 

i.e. l / ln  ( should vanish with a square root behaviour, see figure 3. Our estimate for 
the transition temperature, kB T/ J, = 0.5 1 * 0.03, is in very good agreement with the 
estimates of Duxbury et al (1984) and Houlrik et a1 (1983) for the chiral clock model 
with the chirality parameter, A,, equal to f. Indeed, the equivalence of the metamagnetic 
Potts model at Jx = -J,  and the chiral clock model at A, = 1/2 has been noted before 
(Kinzel et a1 1981, Selke and Yeomans 1982). In that context it should be mentioned 
that the Kosterlitz-Thouless type character of the phase transition was suggested first 
by Ostlund (1981) for the chiral clock model. A previous Monte Carlo study on that 
clock model (Selke and Yeomans 1982) presented supporting evidence, based mainly 
on the finite-size behaviour of the specific heat. Transfer matrix calculations for the 
Hamiltonian limit of the metamagnetic Potts model (Herrmann and Martin 1984) have 
provided additional evidence for such a transition. 

Similar analyses for J, = -aJ, ( a  = 0.3 and 0.65) confirm the character of the 
transition and lead to the phase diagram depicted in figure 4. For comparison, results 
of two previous conjectures on the phase boundaries are included in the figure. Both 
conjectures, based on the Migdal-Kadanoff renormalisation group approximation 
(Kinzel et a1 1981) or symmetry considerations (Truong 1984), are not exact. Neverthe- 
less, for illustrative purposes we shall use the closed-form expression of Kinzel et a1 
(1981) for the transition line 

(28) 

in the next section. With these findings on the metamagnetic three-state Potts model 
we continue to analyse the mock A N N N P  model. 

[1 +exp(Kx)1[1 -exp(K,)I = 4 

VI-1 1 I 1 I I I 1 I 1 1 , 
0 0 4  08 1 2  

-J,IJ, 

Figure 4. Phase boundary of the metamagnetic Potts model. 1 refers to the conjecture of 
Kinzel et al (1981), 2 to the one by Truong (1984), and 3 shows results of the present 
Monte Carlo study. 
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5. Phase diagram and spatially modulated phases 

From (12), (3) and (28) (cf figure 4) it follows that the typical phase diagram of the 
two-dimensional mock ANNNP model consists of a series of loops springing from the 
multiphase point at T = 0 and K = i, which may be computed numerically, as illustrated 
in figure 5 .  For q > 2 each loop encloses a usually ordered spatially modulated phase 
( K e ,  > 0) or a phase of algebraic order ( q  = 3, Keff < 0; no detailed analysis of the 
metamagnetic N N  Potts model for q > 3 has been done so far). For Keff > 0 the phase 
boundary is of first (q  > 4) or second order (q C 4). The total number of loops is [tn], 
where n is the number of decorating spins in between two nodal spins. Because of 
the alternation of the sign of K,, in consecutive loops half of the loops are formed 
by the different types of phases. (To establish rigorously the existence of the loops 
with algebraic order for q = 3 and general n the asymptotic behaviour of the phase 
boundary for small K,, , Kef i  < 0 (see figure 4) needs to be known exactly. (28) would 
imply their existence.) In addition to the loops there is a transition line bounding a 
ferromagnetically ordered phase in the region K < f ,  which is present for all n, while 
for odd n only there is another line bounding a (2,2) antiphase state for K > 4. Each 
ordered phase for all T > 0 is separated from its neighbours by a narrow disordered 
paramagnetic region. This behaviour is very similar to the one of the mock ANNNI 

model (Huse el al 1981). 

-Jz lJ ,  

Figure 5. Phase diagram of the two-dimensional mock A N N N P  model with q = 2 (king) 
and q = 3 for J, = 5 Jo and n = 9. Full curves refer to q = 2; bold broken curves are exact 
results (3) for q = 3  and dotted curves are based on the approximate (28) for q =3.  
The long-range ordered phases are labelled by @ / n  where 4 denotes the dominant 
wavenumber of the spatially modulated pattern. 

The order characterising each phase with Keff > 0 is readily identified in the low- 
temperature limit near the multiphase point ( K ,  T) = (f, 0), where the nodal spins 
become fully ordered (if Keff  < 0 and in the case of algebraic order in two dimensions, 
the expectation values for the nodal spins are zero for all T > 0). Fixing the nodal 
spins, the thermal averages for the decorating spins are given by (16) and (15), where, 
to leading orders of exp(K,/2), we use (19), (22) and (23) in our calculations. 

Numerical results for q = 3 and n = 5 ,  9 are displayed in figure 6 .  In full analogy 
to the mock ANNNI model the modulation of the spatial pattern is primarily with a 
wavelength A = 2(n + l ) a / m  (or wavenumber ij = 27r/A), where m = 0,2,4,  . . . . For 



Potts models with competing interactions 71 1 

213 - 
113- 

1 2  3 4 5 6 I 8  9 m  

" 

Figure 6. The pattern of the bond variables of the three-state mock A N N N P  model with 
n = 5  and 9 in the low-temperature limit, exp(-2K0)<< 1, for different values of A =  
( K  - f )J , /kRT, each corresponding to a distinct long-range ordered phase ( K e e l  0). The 
two nodal spins are set in state 1 .  A, A = 1, Qa = 0, n = 5 ;  B, A = 0, 4a = 7113, n = 5; C, 
A = 0 . 5 , 4 a = n / 5 ,  n=9 ;C ,A=-0 .1 ,  Qa=2a/5 ,  n = 9 .  

n = 5 one may compare figure 6 to the corresponding one in Huse et a1 (1981) 
exemplifying the similarity of the mock Ising and Potts models for K e f i  > 0. For K,, < 0 
we also expect a characteristic modulation in the correlation functions of the bond 
spins within each loop. Because of the apparently algebraic order in two dimensions 
for q = 3 the structure factor should exhibit power-law divergencies instead of Bragg 
peaks (Kosterlitz and Thouless 1973). However, no exact analytic results are available 
in this case. 
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